BET Inhibition Silences Expression of MYCN and BCL2 and Induces Cytotoxicity in Neuroblastoma Tumor Models
نویسندگان
چکیده
BET family proteins are epigenetic regulators known to control expression of genes involved in cell growth and oncogenesis. Selective inhibitors of BET proteins exhibit potent anti-proliferative activity in a number of hematologic cancer models, in part through suppression of the MYC oncogene and downstream Myc-driven pathways. However, little is currently known about the activity of BET inhibitors in solid tumor models, and whether down-regulation of MYC family genes contributes to sensitivity. Here we provide evidence for potent BET inhibitor activity in neuroblastoma, a pediatric solid tumor associated with a high frequency of MYCN amplifications. We treated a panel of neuroblastoma cell lines with a novel small molecule inhibitor of BET proteins, GSK1324726A (I-BET726), and observed potent growth inhibition and cytotoxicity in most cell lines irrespective of MYCN copy number or expression level. Gene expression analyses in neuroblastoma cell lines suggest a role of BET inhibition in apoptosis, signaling, and N-Myc-driven pathways, including the direct suppression of BCL2 and MYCN. Reversal of MYCN or BCL2 suppression reduces the potency of I-BET726-induced cytotoxicity in a cell line-specific manner; however, neither factor fully accounts for I-BET726 sensitivity. Oral administration of I-BET726 to mouse xenograft models of human neuroblastoma results in tumor growth inhibition and down-regulation MYCN and BCL2 expression, suggesting a potential role for these genes in tumor growth. Taken together, our data highlight the potential of BET inhibitors as novel therapeutics for neuroblastoma, and suggest that sensitivity is driven by pleiotropic effects on cell growth and apoptotic pathways in a context-specific manner.
منابع مشابه
Targeting MYCN-Driven Transcription By BET-Bromodomain Inhibition.
PURPOSE Targeting BET proteins was previously shown to have specific antitumoral efficacy against MYCN-amplified neuroblastoma. We here assess the therapeutic efficacy of the BET inhibitor, OTX015, in preclinical neuroblastoma models and extend the knowledge on the role of BRD4 in MYCN-driven neuroblastoma. EXPERIMENTAL DESIGN The efficacy of OTX015 was assessed in in vitro and in vivo models...
متن کاملTargeting MYCN in neuroblastoma by BET bromodomain inhibition.
Bromodomain inhibition comprises a promising therapeutic strategy in cancer, particularly for hematologic malignancies. To date, however, genomic biomarkers to direct clinical translation have been lacking. We conducted a cell-based screen of genetically defined cancer cell lines using a prototypical inhibitor of BET bromodomains. Integration of genetic features with chemosensitivity data revea...
متن کاملTargeting MYCN: a good BET for improving neuroblastoma therapy?
Direct targeting of oncogenic MYC proteins has been an elusive goal of many cancer drug development efforts. In this issue of Cancer Discovery, Stegmaier and colleagues demonstrate that pharmacologically interfering with the bromodomain and extraterminal (BET) class of proteins potently depletes MYCN in neuroblastoma cells, resulting in cellular cytotoxicity and thus providing a novel approach ...
متن کاملThe Bromodomain Inhibitor JQ1 and the Histone Deacetylase Inhibitor Panobinostat Synergistically Reduce N-Myc Expression and Induce Anticancer Effects.
PURPOSE Patients with neuroblastoma associated with MYCN oncogene amplification experience a very poor prognosis. BET bromodomain inhibitors are among the most promising novel anticancer agents as they block BRD3 and BRD4 from activating oncogene transcription. However, treatment with BET bromodomain inhibitors alone does not result in cancer remission in many murine models. EXPERIMENTAL DESI...
متن کاملHsp90 inhibition increases p53 expression and destabilizes MYCN and MYC in neuroblastoma.
Neuroblastoma is a childhood cancer that exhibits either a favorable or an unfavorable phenotype. MYCN and MYC are oncoproteins that play crucial roles in determining the malignancy of unfavorable neuroblastoma. The Hsp90 superchaperone complex assists in the folding and function of a variety of oncogenic client proteins. Inhibition of Hsp90 by small molecule inhibitors leads to the destabiliza...
متن کامل